Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulation approach for studying the performances of original superstrate CIGS thin films solar cells

Identifieur interne : 002561 ( Main/Repository ); précédent : 002560; suivant : 002562

Simulation approach for studying the performances of original superstrate CIGS thin films solar cells

Auteurs : RBID : Pascal:11-0433241

Descripteurs français

English descriptors

Abstract

In this work, we report on the performances of superstrate Cu(In,Ga)Se2 (CIGS) thin film solar cells with an alternative SLG/SnO2:F/CIGS/In2Se3/Zn structure using AMPS-1D (Analysis of Microelectronic and Photonic structures) device simulator. An inverted surface layer, n-type CIGS layer, is inserted between the In2Se3 buffer and CIGS absorber layers and the SnO2:F layer is just a transparent conducting oxide (TCO). The simulation has been carried out by lighting through SnO2:F. The obtained results show that the existence of so-called 'ordered defect compound' (ODC) layer in such a structure is the critical factor responsible for the optimization of the performances. Photovoltaic parameters were determined using the current density-voltage (J-V) curve. An optimal absorber and ODC layer thickness has been estimated, that improve significantly the devices efficiency exceeding 15% AM1.5 G. The variation of carrier density in In2Se3 layer has an influence on the superstrate CIGS cells performances. Moreover, the quantum efficiency (Q.E.) characteristics display a maximum value of about 80% in the visible range.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0433241

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Simulation approach for studying the performances of original superstrate CIGS thin films solar cells</title>
<author>
<name sortKey="Bouchama, I" uniqKey="Bouchama I">I. Bouchama</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire Procédés Matériaux et Energie solaire PROMES-CNRS, Rambla de la Thermodynamique, Technosud</s1>
<s2>66100 Perpignan</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire L.I.S., Université Ferhat Abbas de Sétif</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
<wicri:noRegion>Laboratoire L.I.S., Université Ferhat Abbas de Sétif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Djessas, K" uniqKey="Djessas K">K. Djessas</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire Procédés Matériaux et Energie solaire PROMES-CNRS, Rambla de la Thermodynamique, Technosud</s1>
<s2>66100 Perpignan</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Djahli, F" uniqKey="Djahli F">F. Djahli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire L.I.S., Université Ferhat Abbas de Sétif</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
<wicri:noRegion>Laboratoire L.I.S., Université Ferhat Abbas de Sétif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bouloufa, A" uniqKey="Bouloufa A">A. Bouloufa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoires C.C.N.S. et E. M., Université Ferhat Abbas de Sétif</s1>
<s3>DZA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
<wicri:noRegion>Laboratoires C.C.N.S. et E. M., Université Ferhat Abbas de Sétif</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0433241</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0433241 INIST</idno>
<idno type="RBID">Pascal:11-0433241</idno>
<idno type="wicri:Area/Main/Corpus">002826</idno>
<idno type="wicri:Area/Main/Repository">002561</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Charge carrier density</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Current density</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Layer thickness</term>
<term>Layered crystals</term>
<term>Microelectronics</term>
<term>Numerical simulation</term>
<term>Optimization</term>
<term>Photonic device</term>
<term>Photovoltaic cell</term>
<term>Quantum yield</term>
<term>Solar cell</term>
<term>Thin film device</term>
<term>Tin oxide</term>
<term>Visible spectrum</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation numérique</term>
<term>Dispositif couche mince</term>
<term>Oxyde d'étain</term>
<term>Microélectronique</term>
<term>Cristal lamellaire</term>
<term>Optimisation</term>
<term>Dispositif photovoltaïque</term>
<term>Caractéristique courant tension</term>
<term>Densité courant</term>
<term>Epaisseur couche</term>
<term>Densité porteur charge</term>
<term>Rendement quantique</term>
<term>Spectre visible</term>
<term>Cellule solaire</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>SnO2</term>
<term>In2Se3</term>
<term>8460J</term>
<term>7361</term>
<term>6855J</term>
<term>Dispositif photonique</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Microélectronique</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, we report on the performances of superstrate Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin film solar cells with an alternative SLG/SnO
<sub>2</sub>
:F/CIGS/In
<sub>2</sub>
Se
<sub>3</sub>
/Zn structure using AMPS-1D (Analysis of Microelectronic and Photonic structures) device simulator. An inverted surface layer, n-type CIGS layer, is inserted between the In
<sub>2</sub>
Se
<sub>3</sub>
buffer and CIGS absorber layers and the SnO
<sub>2</sub>
:F layer is just a transparent conducting oxide (TCO). The simulation has been carried out by lighting through SnO
<sub>2</sub>
:F. The obtained results show that the existence of so-called 'ordered defect compound' (ODC) layer in such a structure is the critical factor responsible for the optimization of the performances. Photovoltaic parameters were determined using the current density-voltage (J-V) curve. An optimal absorber and ODC layer thickness has been estimated, that improve significantly the devices efficiency exceeding 15% AM1.5 G. The variation of carrier density in In
<sub>2</sub>
Se
<sub>3</sub>
layer has an influence on the superstrate CIGS cells performances. Moreover, the quantum efficiency (Q.E.) characteristics display a maximum value of about 80% in the visible range.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Simulation approach for studying the performances of original superstrate CIGS thin films solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the EMRS 2010 Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials Strasbourg, France</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BOUCHAMA (I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DJESSAS (K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DJAHLI (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOULOUFA (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GUILLEMOLES (Jean François)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>YAMADA (Akira)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>ABOU-RAS (Daniel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratoire Procédés Matériaux et Energie solaire PROMES-CNRS, Rambla de la Thermodynamique, Technosud</s1>
<s2>66100 Perpignan</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire L.I.S., Université Ferhat Abbas de Sétif</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoires C.C.N.S. et E. M., Université Ferhat Abbas de Sétif</s1>
<s3>DZA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>the European Materials Research Society (E-MRS</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>7280-7283</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000509101330360</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0433241</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work, we report on the performances of superstrate Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin film solar cells with an alternative SLG/SnO
<sub>2</sub>
:F/CIGS/In
<sub>2</sub>
Se
<sub>3</sub>
/Zn structure using AMPS-1D (Analysis of Microelectronic and Photonic structures) device simulator. An inverted surface layer, n-type CIGS layer, is inserted between the In
<sub>2</sub>
Se
<sub>3</sub>
buffer and CIGS absorber layers and the SnO
<sub>2</sub>
:F layer is just a transparent conducting oxide (TCO). The simulation has been carried out by lighting through SnO
<sub>2</sub>
:F. The obtained results show that the existence of so-called 'ordered defect compound' (ODC) layer in such a structure is the critical factor responsible for the optimization of the performances. Photovoltaic parameters were determined using the current density-voltage (J-V) curve. An optimal absorber and ODC layer thickness has been estimated, that improve significantly the devices efficiency exceeding 15% AM1.5 G. The variation of carrier density in In
<sub>2</sub>
Se
<sub>3</sub>
layer has an influence on the superstrate CIGS cells performances. Moreover, the quantum efficiency (Q.E.) characteristics display a maximum value of about 80% in the visible range.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispositif couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thin film device</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispositivo capa delgada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Microélectronique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Microelectronics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Microelectrónica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Cristal lamellaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Layered crystals</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Densité courant</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Current density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Densidad corriente</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Densité porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Charge carrier density</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Concentración portador carga</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Spectre visible</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Visible spectrum</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espectro visible</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>In2Se3</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Dispositif photonique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Photonic device</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Dispositivo fotónico</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>297</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EMRS Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials</s1>
<s2>10</s2>
<s3>Strasbourg FRA</s3>
<s4>2010-06-07</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002561 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002561 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0433241
   |texte=   Simulation approach for studying the performances of original superstrate CIGS thin films solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024